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a b s t r a c t

Partial Least Squares (PLS) regression is one of the most used methods for extracting chemical
information from Near Infrared (NIR) spectroscopic measurements. The success of a PLS calibration
relies largely on the representativeness of the calibration data set. This is not trivial, because not only the
expected variation in the analyte of interest, but also the variation of other contributing factors
(interferents) should be included in the calibration data. This also implies that changes in interferent
concentrations not covered in the calibration step can deteriorate the prediction ability of the calibration
model. Several researchers have suggested that PLS models can be robustified against changes in the
interferent structure by incorporating expert knowledge in the preprocessing step with the aim to
efficiently filter out the spectral influence of the spectral interferents. However, these methods have not
yet been compared against each other. Therefore, in the present study, various preprocessing techniques
exploiting expert knowledge were compared on two experimental data sets. In both data sets, the
calibration and test set were designed to have a different interferent concentration range. The
performance of these techniques was compared to that of preprocessing techniques which do not use
any expert knowledge. Using expert knowledge was found to improve the prediction performance for
both data sets. For data set-1, the prediction error improved nearly 32% when pure component spectra of
the analyte and the interferents were used in the Extended Multiplicative Signal Correction framework.
Similarly, for data set-2, nearly 63% improvement in the prediction error was observed when the
interferent information was utilized in Spectral Interferent Subtraction preprocessing.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

NIR spectroscopy is routinely used for lab analysis in chemical,
pharmaceutical, petrochemical and food processing industries [1–3].
It offers many advantages over conventional analytical methods
such as no need for sample preparation, simultaneous measurement
of multiple components and its non-destructive nature [4]. However,
the interpretation of measured signals using NIR spectroscopy is
not straightforward since the NIR absorption bands are nth order
harmonics and combinations of the fundamental absorption bands
of C–H, N–H and O–H bonds which are broad, relatively weak and
overlapping. NIR spectroscopy is a secondary reference method
where the measured NIR spectra are related to the reference values
obtained using a primary reference method through multivariate
calibration approaches such as Principal Component Regression
(PCR) and Partial Least Squares Regression (PLSR) [5]. In addition,
NIR data might contain systematic variations which are coinciden-
tally correlated to the variation in the concentration of the analyte of

interest [6–8]. There can also be variation in chemical interferents
which could deteriorate the prediction performance of linear regres-
sion models if not properly accounted for. The most obvious way to
account for all possible variation and to obtain good estimates for
the regression coefficients is to calibrate the linear regression model
on a ‘representative’ calibration set. This is not trivial because all the
expected variation in the component of interest and the variation of
other contributing factors (interferents) should be included in the
calibration step. In the past, many studies have reported that the
prediction ability of an inverse model deteriorates with changes in
the interferent structure caused by temperature effects, season to
season variation, cultivar effects, different tablets for the same active
component, batch effects in industrial production processes, etc.
[6,8–10]. This underscores the importance of developing robust
regression models with the ability to predict the concentration of
the analyte of interest with desired level of accuracy even when the
interferent structure changes.

Conventional approaches in such situations include augmenting
the calibration matrix to include variability, correcting non-relevant
variation from new spectra, orthogonalization, etc. However, a more
explicit separation of the analyte and the interferent signal can
be achieved by utilizing expert knowledge in the multivariate
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modeling. In the past, we demonstrated the use of prior information
to build robust calibration models by adopting various calibration
approaches [11]. In this study, we explore the potential of using prior
information in the preprocessing step.

The aim of the preprocessing step is to transform or filter the
matrix of measured spectra in such a way that the perturbations
caused by the interferents are either removed or substantially
reduced. Subsequently, linear regression models can be built on
the preprocessed ‘linearized’ data set. However, using conven-
tional preprocessing techniques might not result in the prediction
improvement, especially when the interferent concentrations in
the test set vary differently from the ones in the calibration set. In
such cases, the preprocessing techniques which use expert knowl-
edge in the preprocessing step may outperform their conventional
counterparts. The expert knowledge may include the pure com-
ponent spectrum of the analyte of interest and/or the known
interferents, which are either available or can be acquired.

The most popular preprocessing techniques which allow utiliz-
ing expert knowledge are External Parameter Orthogonalization
(EPO), Generalized Least Squares Weighting (GLSW), Extended
Multiplicative Signal Correction (EMSC) and Spectral Interference
Subtraction (SIS). These techniques offer the flexibility in choosing
the amount of pure component information to be supplied. This is
the most important element in fine-tuning the preprocessing step
as providing the accurate information of interferent(s) helps to
efficiently filter their spectral influence. However, providing inac-
curate or excess interferent information might lead to removal of
part of the analyte specific information. This is also interesting
from chemometrics point of view as the fine-tuning step exploits
the expert knowledge available to the analyst which in conven-
tional PLS calibration is seldom utilized.

Including expert knowledge to filter the measured spectra has
potential to build robust PLSR models for analytical systems where
the concentration of known interferents can vary in an unknown
fashion. One such example can be blood serum solution where the
expert knowledge regarding potential interferents is available but
their concentration ranges can vary depending on the physical
state of individuals. In such situations, the expert knowledge can
be utilized to build PLSR models which are insensitive to concen-
tration fluctuations of known interferents.

In this study, the performance of preprocessing techniques which
make use of expert knowledge is benchmarked. To avoid drawing
conclusions based on a single data set, the study is performed on
two data sets where the data was deliberately split in a calibration
and test set with a different concentration range of interferents to
test the robustness of calibration models against such changes. The
effect of choosing interferent information on the performance of
preprocessing techniques is also investigated.

2. Preprocessing techniques exploiting expert knowledge

2.1. Extended Multiplicative Scatter Correction

In analyzing complex mixtures, uncontrolled variations such as
light scattering might dramatically reduce the predictive ability
of the regression models. As the scattering may vary depending on
particle size and shape, sample packing and sample surface [12], the
extent of scattering is hardly controllable in practice. Multiplicative
Scatter Correction (MSC) is widely used in such cases to compensate
for the nonspecific additive and multiplicative effects introduced by
uncontrolled light variations. However, in spectral regions where the
analyte of interest or interferents absorb strongly, MSC may confuse
the chemical absorption with physical light scattering effects result-
ing into removal of analyte information. To avoid losing useful
information from the measured spectra, the EMSC technique was

proposed by Martens et al. [12]. The EMSC model was further
extended to include prior knowledge about the chemical constitu-
ents, while estimating the parameters for the EMSC scatter correc-
tion [13]. When the pure component spectra are available, EMSC
uses the spectral information of chemical constituents to down-
weigh those wavelength regions where chemical species exhibit
strong chemical absorption.

According to the EMSC model, a measured spectrum xi can be
decomposed in different contributions:

xi ¼ aiþbixi;chemþdiλþeiλ2þεi ð1Þ
where ai and bi represent the additive (e.g. baseline) and multi-
plicative effects (e.g. optical path length or light scattering level),
respectively; xi,chem is the contribution of known pure components
to the spectrum xi of the ith sample; d and e allow for the correction
of wavelength dependent spectral variations from sample to sample;
λ is the vector of wavelengths at which the spectrum has been
acquired and ε is the vector containing residual error.

When expert knowledge about the constituents is available, the
parameters in EMSC are estimated based on a modified Beer–
Lambert law, which can be expressed as in the following equation:

xi;chem ¼ ðci1k1þci2k2þ…þcijkjÞ ð2Þ
where c1, c2,…, cj and k1, k2,…, kj are respectively the concentrations
and the corresponding pure component spectra (expert information)
for components 1–j. However, the concentration of every chemical
constituent in the mixture is often not known and has to be estimated.
As this would involve the estimation of products of unknown
coefficients, the xi,chem part is typically rewritten as a deviation from
a reference spectrum xref (Eq. (3)).

xi;chem ¼ xrefþΔci1k1þΔci2k2þ…þΔcijkj ð3Þ
where Δcij represents the difference in concentration of the jth
component between the reference xref and ith sample. Typically,
the mean spectrum of the calibration set is used as the reference
spectrum xref.

Now Eq. (1) gets a purely additive term bixref.

xi ¼ ai1þbixrefþhikiþdiλþeiλ2þεi ð4Þ
where hi ¼ biΔci, and k is the chemical variation spectrum
estimated as the difference of pure component spectrum of the
chemical constituents.

The parameters âi; b̂i; ĥi; d̂i and êi can then be estimated by
least squares regression of each input spectrum. The EMSC
corrected spectrum for each input spectrum is obtained as

xn

i ¼ ðxi� âl� ĥlki� d̂l� êl
2Þ=b̂l ð5Þ

The matrix containing EMSC corrected spectra Xn can then be
utilized for regression modeling using PCR or PLS.

2.2. Spectral Interference Subtraction

Spectral Interference Subtraction was proposed by Martens et al.
[12] in conjunction with EMSC for the cases where light scattering
effects are present in the data set. In such cases, EMSC is first applied
to correct for the light scattering effects. Subsequently, SIS is applied
to the EMSC corrected data [12]. However, SIS can also be applied as
an independent preprocessing techniquewhen light scattering is not
a serious issue in the measured spectra. When the pure component
spectra of interferents are available, SIS proposes to subtract their
spectral contribution from the measured spectra. This allows filter-
ing of the interferent contributions without removing the informa-
tion about the analyte of interest.

If kP and KI represent the pure component contribution of the
analyte of interest and the known interferents, respectively, then
the measured absorbance xi for a given sample i can be expressed
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as follows:

xi ¼ kPcP;iþKIcI;iþei ð6Þ

where cP is the concentration vector for the analyte and CI is the
concentration matrix of known interferents. The term ei repre-
sents the residual error. In most of the cases, the interferent
concentrations CI are unknown and have to be estimated from the
pure interferent spectra KI using least squares estimation:

ĈI ¼ ½K0
IKI��1K0

IX ð7Þ

In the next step, the spectral contribution of the interferents is
subtracted from the measured spectra X.

Xn ¼X�KIĈI ð8Þ
The SIS corrected spectra X* can then be used to build a calibration
model using PCR or PLS.

2.3. External Parameter Orthogonalization

The prediction accuracy of linear regression models can reduce
dramatically due to variation of an external parameter such as
sample temperature or other spectrally active components (inter-
ferents), which have an impact on the measured signals [8–10]. In
principle, it would be possible to measure the external parameter
and use this information to correct the sample spectra, but in
practice, this is often not feasible. For such cases, Roger et al. [6]
introduced the External Parameter Orthogonalization preproces-
sing technique with an aim to remove the part of measured
spectra X which is mostly influenced by an external parameter.
EPO models the measured spectra X as comprised of two ortho-
gonal subspaces: one containing the useful information, and the
other containing the parasitic variation which is largely unrelated
to the variation in the concentration of the analyte of interest.
Mathematically, the underlying model can be expressed as repre-
sented in the following equation:

X¼XPþXQþE ð9Þ
where P is the projection operator of the component of interest, Q
is the projection operator for the external parameter, and E is the
residual matrix. EPO proposes to remove a part of the perturba-
tions caused by Q by projecting the spectra onto the subspace
orthogonal to Q. However, the influence of Q on the spectra is not
known in advance and hence needs to be estimated by decom-
posing the measured spectra as presented in Eq. (9). In practice,
the parasitic subspace Q is estimated by performing Principal
Component Analysis (PCA) on a small set of spectra measured on
the same object when the external parameter is varying. When the
pure component spectra of the interferents are available, they can
be used to estimate the parasitic subspace Q̂ .

The original spectra are then corrected by orthogonal projec-
tion onto the estimated Q̂ as presented in the following equation:

Xn ¼XðI�Q̂ Þ ð10Þ
This corrected matrix Xn can then be used to build a calibration
model using PCR or PLS.

2.4. Generalized Least Squares Weighting

Generalized Least Squares Weighting is a covariance weighted
preprocessing technique [14], which performs a ‘pre-whitening’ of
the spectra by deflating the variables that are unrelated to the
variation in the concentration of the analyte of interest. In this way,
GLSW aims at finding a balance between the relevant part and the
noise component of each variable. In practice, the weighting can be

expressed as follows:

Xn ¼XG ð11Þ
where X is the matrix of input spectra, and G is a scaling matrix
which can be defined as the inverse square root of the uncertainty or
noise covariance matrix Σ:

G¼Σ�1=2 ð12Þ
The uncertainty or noise covariance matrix can be defined either
as the total standard deviation in the available variables, or the
expected standard deviations in their errors.

When prior information such as pure component spectra of
known interferents is available, Σ can be defined as follows:

Σ¼KI covðDÞK0
IþcovðEÞ ð13Þ

where KI is the matrix of interferent spectra and ‘cov(D)’ is an
estimate for the variance–covariance matrix of the interferent con-
centrations, which is typically unknown to the analyst. In practice,
this can be estimated as d2I, with d2 being the expected average
variance of the interferent concentrations. Similarly, ‘cov(E)’ is the
covariance matrix of the other unidentified error patterns and noise,
which is assumed to be uncorrelated. This can be estimated as s2I,
where s2 is the average uncertainty variance of all X variables [14].

This leads to a simplified form of Eq. (13), which can be written as

Σ¼ d2KIK
0
Iþs2I ð14Þ

As d2 is the general scaling factor, which balances the contribution of
interferent spectra to the contribution of the uncertainty variance of
the X variables, Eq. (14) can further be simplified as

Σ¼ dn2KIK
0
IþI ð15Þ

Thus, by defining the scaling factor dn2 (the relative variance in the
interferent concentrations) sufficiently large, GLSW preprocessing
can make the least squares modeling of X completely insensitive to
the concentration variations of the unknown interferents. This
should lead to a reliable estimation of the concentration of the
analyte of interest [14].

3. Experimental

In this section, the experimental details of the data sets including
the spectral acquisition and the estimation of pure component
spectra of analyte and known interferents are presented.

Data set-1 consists of NIR spectra of three parallel sets of
aqueous solutions containing similar concentrations for glucose
(1, 3, 7, 12, 15, 22 and 30 mM), urea (5 and 6 mM) and sodium
(Na) D-lactate (1 and 5 mM). A full factorial design of these
concentrations was prepared resulting in 28 (¼7�2�2) samples
for every set of aqueous solutions. In total, 84 samples were
produced for three sets. NIR spectra in the range 800–2500 nm
were acquired for these samples with a Bruker MPA FT-NIR spectro-
meter (Bruker, Ettlingen, Germany) with a 1 mm transflectance
probe. All the measurements were carried out in a temperature
controlled facility at 37 1C71.0 1C. The spectra for each sample were
recorded in triplicate resulting in 252 spectra for 84 aqueous
solution samples.

To estimate the pure component spectra, the method described
by Amerov et al. [7] was followed. As the molar absorptivity of
glucose, urea and lactate in the NIR region is very low (�the order of
10�4–10�5 mM�1 mm�1), relatively high concentration solutions of
glucose (120 mM), urea (100 mM) and lactate (100 mM) were
prepared to obtain good quality estimates of the pure component
spectra [7]. The measured spectra were corrected for reflective
losses, the dispersion effect and the water displacement effect by
meticulously following the procedure described by Amerov et al. [7].
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The wavelength-dependent values of the refractive index for the
‘Quartz SUPRASIL cuvette’ used in the spectral measurement were
estimated using the Sellmeier equation [15]. The change in refractive
index with glucose concentration was calculated as

η¼ 1:325þ2:73� 10�5½cg� ð16Þ
where η is the refractive index of the solution and cg is the
concentration of glucose in milli-moles.

Data set-2 consists of NIR spectra for a triangular mixture design
of glucose, casein and lactate powders analyzed by Naes et al. [16]
and Saeys et al. [17]. The spectra were measured in a closed cup on
a monochromator instrument (Technicon InfraAlyzer 500) in the
wavelength range from 1100 to 2500 nm. The powder mixtures
were prepared by mixing the appropriate amounts of casein, glucose
and lactate powders. Since these powders contain some amount of
moisture and ash, the weight percentage of casein, glucose and
lactate was measured and the true content in the triangular design
was calculated. The samples at the extremes in the triangular design
represent the pure component spectra of three chemical constitu-
ents. It should be noted that the impurities, i.e., moisture and ash,
also will have some contribution in the measured spectra and the
pure component spectra used here are the NIR spectra of the
powders containing some moisture, ash and the traces of impurities.
In addition, the measured ‘pure component spectra’ still include the
matrix effect, i.e., the variations arising from varying particle size,
particle shape and sample packing.

4. Data analysis

For both data sets, the effect of using expert knowledge in
preprocessing on the prediction ability of a PLS regression model
was evaluated and compared against the performance of PLS
regression combined with preprocessing techniques which do
not use expert knowledge. Among the most popular preprocessing
techniques, Detrend [18], EPO [6], GLSW [14,19], MSC [20,21],
Standard Normal Variate (SNV) [18], Normalization using Eucli-
dean Norm [22], Orthogonal Signal Correction (OSC) [23–25] and
EMSC [12,13,26,27] were used to filter the spectra without
providing any expert knowledge. The prior information was
utilized in the preprocessing step using EMSC [13,28], EPO [6],
GLSW [14,19] and SIS [12] framework. In Fig. 1, the mathematical
basis of the preprocessing techniques used in this study is
presented.

Using above preprocessing techniques, a total of seventeen
calibration models were built for both data sets. The optimal
number of Latent Variables (LVs) to be used in the calibration was
chosen based on the reduction in root mean square error of cross
validation (RMSECV). The optimal number was defined as the
minimum of LVs in the calibration after which further addition of
LVs yielded no significant improvement in the RMSECV. In most
cases, this led to the number of LVs corresponding to (nearly)
minimum RMSECV [29]. Finally, the performance of different
preprocessing techniques was evaluated based on the improvement
in root mean square error of prediction (RMSEP) in comparison to
the performance of a PLS calibration built on the mean-centered
NIR spectra.

4.1. Selection of calibration data

For data set-1, the calibration was performed for glucose con-
centration using the spectral region from 1525–1825 nm, known as
the first overtone band of glucose absorption in the NIR region [7].
The data set was split based on the lactate concentration. The
calibration set contained the samples with 1 mM lactate concentra-
tion whereas the samples with 5 mM lactate concentration were

kept in the test set. The pure component spectra of glucose (the
analyte signal), urea and Na-lactate (the interferent signals) were
used as the expert knowledge. Cross-Validation was performed
using Contiguous Blocks with 14 splits to ensure that the three
spectral replicates belonging to the same physical sample were
always kept together either in the calibration or the test set. The
effect of prior information was demonstrated by building PLS
models with varying amounts of prior information.

For data set-2, the measured intensities were converted to
absorbance scale using the log(1/R) transform. The PLS calibration
was performed for glucose weight percent. The experimental
design and the validation scheme for data set-2 are illustrated in
Fig. 2. The data set consists of 231 samples of which the three
samples at the extremes of the triangular design correspond to the
pure component spectra of glucose, casein and lactate. Since these
spectra are used as expert knowledge, they were not included in
the calibration or test set. The remaining 228 powder mixture

Fig. 1. Schematic presentation of mathematical basis of the preprocessing techni-
ques used for correcting the measured spectrum.

Fig. 2. Illustration of the splitting scheme for data set-2 (one sample for each
intersection of lines) with marking of the calibration and test sets.
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spectra were split into calibration and test set in such a way that
the glucose concentration covers a similar range in the calibration
and test set (0–86.9%), while the ranges of the interferents, i.e.,
lactate and casein are different. The Cross-Validation strategy used
for selecting the optimal number of latent variables was Random
Splits with 10 splits.

4.2. Inclusion of expert knowledge

The effect of using selective interferent information was inves-
tigated for both data sets. For data set-1, it can be observed from
Fig. 3 that urea has no absorption in the wavelength range used
in this study, whereas the absorption bands of lactate are very
similar to glucose absorption. In addition, the calibration and test
sets are designed to contain different lactate concentrations. Thus,
lactate is treated as the key interferent for data set-1. For data set-
2, all three chemical constituents, glucose, casein and lactate, are
spectrally active (Fig. 4). However, lactate is the key interferent as
the test set contains higher concentration range of lactate than the
calibration set.

Based on varying amounts of expert knowledge, two PLS
models were built for EPO, GLSW and SIS preprocessing (Fig. 5).
In the first case, the pure component information of key inter-
ferent (lactate for both datasets) was used as the interferent signal.
In the second case, the pure component spectra of both inter-
ferents (lactate and urea for data set-1; lactate and casein for data
set-2) were utilized in preprocessing. For EMSC, a total of four PLS
calibrations were built (Fig. 5). In the first calibration, only
the pure spectrum of the analyte (glucose for both data sets)
was used in the EMSC framework. In the second calibration, the
pure component spectrum of the key interferent alone was
utilized. In the third calibration, the analyte and the key inter-
ferent spectra were supplied in the EMSC step. In the fourth
calibration, the analyte spectra of glucose and both the inter-
ferents were utilized in the preprocessing step.

4.3. Performance comparison

A two-way ANOVA test was performed on the absolute prediction
errors to detect whether the observed difference in prediction
performance was statistically significant. The preprocessing technique
was taken as the first ANOVA factor whereas the sample number

was added as the second ANOVA factor to make the test paired [30].
The preprocessing technique was treated as the ‘fixed factor’ whereas
the sample number was treated as a ‘random factor’. The different
preprocessing techniques were compared using Tukey Honestly Sig-
nificant Difference (HSD) multiple comparison to ascertain whether a
given preprocessing had a significant influence (αr0.05) on the
prediction performance of the PLS regression model. It was observed
that the inclusion of all preprocessing techniques in the Tukey HSD
test resulted into a large number of sub-groups with very little
analytical significance. Hence, the ANOVA and Tukey HSD tests were
limited to the preprocessing techniques which resulted in RMSEP
values less than or equal to the RMSEP obtained when the PLS
calibration was performed without using any preprocessing except
mean-centering.

All calibrations were performed in MATLABs, 7.10.0 (R2010a)
(The Mathworks, Natick, MA, USA). For EMSC, the EMSC toolbox
(Eigenvector Research, Wenatchee, WA, USA) was used whereas
other preprocessing techniques and the PLS calibration were

Fig. 3. Pure component spectra of glucose (solid), lactate (dash) and urea (dash-
dot) in the first overtone band of glucose absorption in the NIR region.

Fig. 4. Pure component spectra of glucose (solid), casein (dash) and lactate (dash-
dot) in the NIR region.

Fig. 5. Schematic presentation of using pure component spectra of the analyte
(s) and the known interferents (p) in EPO, GLSW, SIS and EMSC preprocessing. The
abbreviations lac, urea, cas, and glu refer to lactate, urea, casein and glucose,
respectively. Superscripts ‘a’ and ‘b’ indicate data set-1 and 2, respectively.
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calculated using the PLS toolbox (Eigenvector Research, Wenatchee,
WA, USA).

5. Results and discussions

5.1. Data set-1

For data set-1, the performance statistics for the different PLS
calibrations are summarized in Table 1, where the preprocessing
techniques are grouped together based on whether or not they
exploit the expert knowledge. For the PLS model built without
using any preprocessing, the RMSECV and RMSEP values were
1.53 mM and 2.72 mM, respectively for 7 LVs in the calibration.
This result was used for benchmarking and performance evalua-
tion of the preprocessing techniques used in this study. As it can
be observed from Table 1, the preprocessing techniques which do
not use expert information were not able to improve the predic-
tion ability of the PLS calibration. EPO, GLSW and OSC were found
to have no effect on the PLS model performance and their RMSECV
and RMSEP values were similar. On the other hand, Detrend, MSC,
SNV, Normalization using Euclidean Norm and EMSC (no prior
information) were detrimental as they resulted in higher RMSECV
and RMSEP values. This can be explained partly by the fact that
glucose (analyte) and lactate (key interferent) have a very similar
spectral signature, which could have resulted into partial removal
of analyte specific information during preprocessing.

In the next step, the performance of various preprocessing
techniques using expert information was evaluated. When the
pure component spectrum of lactate alone was utilized in EPO and
GLSW to define the noise clutter, it did not result in an improve-
ment of the PLS performance. Similarly, when the spectra of both
the interferents, lactate and urea, were supplied to define the

clutter signal in GLSW no improvement in prediction ability was
obtained. EPO resulted into an RMSEP of 2.94 mM indicating that
the use of the urea spectrum to define the clutter signal has an
adverse effect on the prediction performance of the PLS calibration
model. However, the difference in RMSEP was not statistically
different in comparison to when no expert information was used.
Similar observations were made when the expert knowledge was
used in EMSC framework. Using the glucose spectrum alone in
EMSC resulted into an RMSEP value of 3.01 mM. However, when
the lactate spectrum alone was utilized in EMSC, significant
improvement in the prediction performance was obtained with a
reduction of the RMSEP to 1.87 mM. Using the glucose spectrum
in addition to lactate further improved the RMSEP to 1.84 mM.
However, when the pure component spectrum of urea was used
alongwith lactate and glucose, the RMSEP deteriorated dramati-
cally to 4.41 mM. Increase in the RMSEP was also observed when
the pure component spectrum of urea was used in SIS preproces-
sing (RMSEP¼4.20 mM). However, when the lactate spectrum
alone was utilized in SIS, the RMSEP improved to 2.17 mM.

Deterioration of the prediction performance upon including the
urea spectrum as interferent highlights the importance of using
accurate pure component information. Urea was not an active
interferent as it does not have any absorption peak in the studied
wavelength region. Its inclusion in the preprocessing step as an
interferent might have resulted in excess signal removal including
a part of analyte specific information. As these preprocessing
techniques rely heavily on pure component information to define
the noise signal, the quality and accuracy of the pure component
information has a significant effect on the prediction performance.

The results of 2-way ANOVA and the Tukey Honestly Significant
Difference multiple comparison tests are also presented in Table 1.
The preprocessing techniques which did not show statistically
significant difference in RMSEP values have been grouped
together. This resulted into three groups. The RMSEP obtained
for EMSC (using lactate spectrum alone, and while using glucose
and lactate spectra together) and SIS (using lactate spectrum
alone) preprocessing was found to be significantly different from
that obtained with a PLS model built without using any expert
knowledge. In both cases the reduction in the prediction error was
only significant when only the lactate spectrumwas used to define
the clutter signal. Inclusion of the glucose spectrum in EMSC in
addition to the lactate spectrum did not result in a significantly
different RMSEP.

5.2. Data set-2

The performance statistics of PLS calibration models trained on
the original and preprocessed spectra are summarized in Table 2.
Using different concentration ranges of lactate in calibration and
test sets had a dramatic impact on the prediction performance of
the PLS model resulting in RMSECV and RMSEP values of 0.70%
and 2.77%, respectively for 10 LVs. Among the preprocessing
techniques which do not use prior information, Detrend and EPO
were found to improve the prediction performance of the PLS
model. Building the PLS model using Detrend preprocessed data
resulted in a reduction in RMSEP to 2.01% for 9 LVs used in the
calibration. When EPO (without supplying prior information) was
used to preprocess the data, the RMSEP improved to 2.62% for
9 LVs used in the PLS model. However, the improvement was not
statistically significant compared to when no prior information
was utilized. OSC did not have any effect on the prediction
performance and the RMSEP was 2.78% for 9 LVs in the calibration.
Using GLSW, MSC, SNV, Normalization (Euclidean Norm) and
EMSC preprocessing for filtering the data apparently deteriorated
the prediction performance of the corresponding calibration
models; the RMSEP for these techniques was 3.03%, 4.25%, 2.85%,

Table 1
Overview of the prediction ability of PLS models and preprocessing techniques
using expert information for the prediction of glucose concentration in aqueous
glucose solutions (data set-1).

Preprocessing1 LVs R2 (%) RMSEC2 RMSECV2 RMSEP2

No expert information
No Preprocessinga 7 96.8 0.88 1.53 2.72b,c

Detrend 5 96.2 1.11 1.80 3.12
EPOa 6 96.8 0.88 1.55 2.72b,c

GLSWa 7 96.8 0.88 1.53 2.72b,c

MSC 4 96.0 1.52 1.85 2.83
SNV 4 96.0 1.52 1.85 2.83
Normalization (Euclidean Norm) 5 96.0 1.44 1.74 2.84
OSCa 6 96.8 0.88 1.53 2.72b,c

EMSC 3 95.6 1.62 1.84 2.98

Exploiting expert information
EPO3,a 7 96.8 0.88 1.53 2.72b,c

EPO4 6 96.5 1.03 1.57 2.94
GLSW3,a 7 96.8 0.88 1.53 2.72b,c

GLSW4,a 7 96.8 0.88 1.53 2.72b,c

EMSC5 3 95.6 1.61 1.79 3.01
EMSC4,5 5 85.0 2.92 4.24 4.41
EMSC3,b 4 96.3 1.89 2.31 1.87a

EMSC3,5,b 4 96.3 1.90 2.28 1.84a

SIS3,c 7 97.3 0.99 1.57 2.17a

SIS4 7 92.1 1.52 2.81 4.20

a–cSuperscript letters present the results of Tukey HSD multiple comparison test; in
the first column of the table, superscript letters indicate the group in which the
preprocessing techniques belong while in the RMSEP column, different superscript
letters represent significantly different groups(a£0.05).

1 Data were mean centered prior to PLS modeling in all the cases.
2 In mM units.
3 Using lactate spectrum as interferent signal.
4 Using lactate and urea spectra together as interferent signal.
5 Using glucose spectrum as analyte signal.
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3.08% and 3.78%, respectively for all calibration models using 8–
10 LVs in the calibration.

Next, the expert knowledge was utilized in the preprocessing
step. It was observed that all preprocessing techniques using
expert knowledge except EMSC improved the prediction perfor-
mance of PLS calibration models. When EMSC utilizing the analyte
spectrum alone was applied, the RMSEP increased to 3.97%. Using
the pure component spectrum of the key interferent (i.e. lactate)
alone in EMSC deteriorated the RMSEP to 5.83%. The EMSC
preprocessing was also performed using the glucose spectrum as
the analyte information and (a.) the lactate spectrum alone, and
(b.) the lactate and the casein spectra together, to define the
interferent information. In the first case, EMSC predictions were
unstable with the RMSECV and RMSEP being 1.40% and 24.16%,
respectively. When the lactate and casein spectra were together
utilized to define the interferent signals, the RMSECV
rose to 5.76%, whereas the RMSEP values were strangely ranging
around 200%. Further investigation revealed that the samples
having casein concentration equal to zero in the test set destabi-
lized the PLS calibration and resulted into abnormally high RMSEP
values. Removing these samples from the test set improved the
RMSEP values, but still the RMSEP was ranging around 4–5%
indicating EMSC was not able to filter the analyte and interferent
signal efficiently. The probable reason for this non-performance
might be the spectral similarity between glucose, casein and
lactate spectra in the investigated wavelength region which could
lead to collinearity during the EMSC parameter estimation.

Using the lactate spectrum alone in EPO and GLSW significantly
improved the prediction performance. For both preprocessing
techniques, the RMSEP was equal to 1.63% for 9 LVs used in the
calibration. Using lactate and casein spectra together to define the
clutter signal in GLSW did not improve the predictions further and
the RMSEP was still 1.63% for 9 LVs. For EPO using lactate and

casein spectra together, the RMSEP increased to 1.71% although in
this case only 8 LVs were used in the calibration.

Subtracting the spectral contribution of interferents using SIS
prior to the PLS calibration improved the prediction performance.
Using the lactate spectrum alone in SIS followed by building the
PLS calibration resulted into RMSECV and RMSEP of 0.92% and
1.82% for 8 LVs in the calibration. When lactate and casein spectra
were together utilized in SIS, the RMSEP further improved to 1.02%
for 11 LVs in the calibration.

The results of the 2-way ANOVA and the Tukey Honestly
Significant Difference multiple comparison test are also presented
in Table 2. Grouping the preprocessing techniques with no statisti-
cally significant difference in the RMSEP values resulted into six
groups. Among the preprocessing techniques which do not use any
prior information, Detrend resulted in a significant improvement in
the RMSEP (¼2.01%). Among the preprocessing techniques using
prior information, EPO, GLSW and SIS resulted in a significant
improvement in the RMSEP in comparison to the PLS calibration
model built without using any preprocessing apart from mean
centering. No statistically significant difference was observed among
the RMSEP values obtained with PLS calibration models built with
EPO using lactate spectrum, GLSW using lactate spectrum and GLSW
using lactate and casein spectra. SIS, which gave the lowest RMSEP
value (¼1.02%), also showed significant improvement in the RMSEP
in comparison to the PLS model built without using any preproces-
sing and the PLS calibration built using Detrend preprocessing. An
interesting comparison with our previous work on using expert
information directly into calibration steps [11] revealed that none of
the preprocessing techniques reported in this study outperformed
the Augmented Classical Least Squares calibration model incorporat-
ing expert knowledge although the performance of SIS preprocessing
was quite close.

In this data set, the primary reason for poor performance of PLS
calibration without prior preprocessing was the difference in
concentration ranges of the interferents in calibration and test
sets. Successful PLS modeling in such situation needed the
effective filtering or down-weighting of those wavelengths where
lactate had absorption peaks. EMSC was not at all effective for this
data set, which could be attributed to the spectral similarities
between glucose and lactate. All other preprocessing techniques
were effective in this data set as they were able to either down-
weight (EPO, GLSW) or remove the chemical interference (SIS) of
casein and lactate.

6. Conclusions

In this study, the performance of preprocessing techniques
exploiting expert knowledge was evaluated and compared against
the ones which do not utilize expert knowledge. Pure component
spectra of the analyte of interest and/or known interferents were
used in EMSC, EPO, GLSW and SIS to filter the measured spectra.
Filtered spectra were fed to the PLS models with the aim to obtain
calibration models which are (more) robust against changes in the
interferent concentrations. To avoid drawing inference from a
single data set, the study was performed on two data sets. In both
cases, the data was split in a way to create calibration and test sets
with different concentration range of interferents.

None of the preprocessing techniques was able to improve the
PLS predictions unless the expert knowledge about the analyte
and/or the know interferents was utilized in the preprocessing.
The preprocessing techniques which use expert knowledge clearly
outperformed the other methods and resulted in a significant
improvement in the RMSEP values. Among the preprocessing
techniques using expert information, SIS was found to be an
effective technique for both the data sets. Other techniques, i.e.,

Table 2
Overview of the prediction ability of PLS models and preprocessing techniques
using expert information for the prediction of glucose concentration in powder
mixture data set (data set-2).

Preprocessing1 LVs R2 (%) RMSEC2 RMSECV2 RMSEP2

No expert information
No Preprocessinga 10 99.5 0.62 0.70 2.77b,d,f

Detrendb 10 99.7 0.56 0.69 2.01a,f

EPOc 9 99.5 0.63 0.72 2.62d,f

GLSW 10 99.4 0.60 0.70 3.03
MSC 8 98.8 0.62 0.73 4.25
SNV 8 99.4 0.68 0.76 2.85
Normalization (Euclidean Norm) 9 99.4 0.56 0.66 3.08
OSC 9 99.5 0.62 0.71 2.78
EMSC 8 99.0 0.74 0.89 3.78

Exploiting expert information
EPO3,d 9 99.8 0.80 0.90 1.63a,c

EPO4,b 8 99.8 0.83 0.92 1.71a,f

GLSW3,d 9 99.8 0.80 0.90 1.63a,c

GLSW4,d 9 99.8 0.80 0.90 1.63a,c

EMSC5 10 98.8 0.84 1.10 3.97
EMSC4,5 9 – 3.09 5.76 –

EMSC3 8 97.4 0.85 1.02 5.83
EMSC3,5 9 66.5 1.00 1.40 24.16
SIS3,e 8 99.7 0.82 0.92 1.82f

SIS4,f 11 99.9 0.52 0.63 1.02a,b,c,e

a–fSuperscript letters present the results of Tukey HSD multiple comparison test; in
the first column of the table, superscript letters indicate the group in which the
preprocessing techniques belong while in the RMSEP column, different superscript
letters represent significantly different groups(a£0.05).

1 Data were mean centered prior to PLS modeling in all cases.
2 In percentage (%) composition.
3 Using lactate spectrum as interferent signal.
4 Using lactate and casein spectra together as interferent signal.
5 Using glucose spectrum as analyte signal.
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EPO, GLSW and EMSC were effective in one of the data sets, but
not in the other one. This can be explained based on the fact that
the success of these techniques depends on the physical charac-
teristics of samples, measurement conditions and the spectral
signature of analyte and interferent species. However, it should be
noted that most of these methods are based on a multi-
component Beer0s law and thus assume that the interferents have
an additive effect.

Altogether, the present study has demonstrated the potential of
preprocessing techniques using expert knowledge to produce PLS
calibration models that are (more) robust against changes in the
interferent levels which have not been covered in the calibration set.
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